Human Bax Inhibitor-1 (HsBI-1/TMBIM6) is the founding member of the evolutionary conserved TMBIM superfamily of proteins that share sequence homology within the transmembrane Bax inhibitor-containing motif (TMBIM). Mechanistically, BI-1/TMBIM6 and all the other mammalian TMBIM proteins appear to be involved in the maintenance of calcium homeostasis, and the crystal structure of a bacterial TMBIM protein, BsYetJ, suggests that the protein is a pH-sensitive calcium leak. The budding yeast, Saccharomyces cerevisiae, has a single TMBIM family member (YNL305C) named Bxi1p/Ybh3p. To determine the function Bxi1p/Ybh3p, we overexpressed Bxi1p-GFP in E. coli to interrogate its putative calcium channel function. We show that bacterial cells expressing Bxi1p-GFP are more permeable to calcium than controls. Our data suggests that yeast Bax inhibitor (Bxi1p) is a calcium channel in E. coli, lending support to our proposal that Bxi1p is a bona fide member of the TMBIM family of proteins. We use our bacterial system to show that gadolinium is an inhibitor of Bxi1p in vivo, suggesting a path forward to identifying other small-molecular inhibitors of this clinically-important and highly conserved superfamily of proteins. Finally, parallel experiments revealed that the human Bax Inhibitor-1 (HsBI-1/TMBIM6) is also a calcium channel in bacteria that can be inhibited by gadolinium.
Our laboratory is supported by NIH Grant NIGMS R15 GM110578 awarded to the RI-INBRE program for SURF training.