Multi-phase synchronous buck converter (MSBC) is becoming popular for the electric vehicle (EV) charging application because of its higher efficiency, smaller passive component sizes, bidirectional power flow, and output current ripple reduction through interleaving. This converter also provides higher reliability than the traditional single phase converter since its modular structure enables fault tolerant operation. Fault management in the converter requires the detection of switch fault, shut down of the faulty phase, and reconfiguration of the PWM signals for the healthy phases to avoid circulating current and high output current ripple. In addition, it is desirable that the fault management method can be implemented using the micro-controller unit (MCU) or digital signal processor (DSP), which are widely used to control power converters. This paper presents a fault management method for detecting switch faults and reconfiguring healthy phases using a DSP. The method is validated through simulations and experiments using a commercial off-the-shelf power stack.