The adoption-rate of GaN and SiC power transistors continues to grow in modern power electronic circuits. These Wide-Bandgap devices can have high transconductance, gain-bandwidth product and fast switching. While the fast switching characteristics offer improved converter performance, they can also create challenges for the design and implementation of the gate drive circuit, including its power and isolation. These system challenges are shared not only by discrete transistors, but also those with co-packaged or integrated gate drive functions. In addition, designers today often want to enable multi-sourced transistor options, yet in many cases, the specifications, requirements and footprints are not the same between manufacturers. And finally, the system partitioning and PCB layout of the gate drive, its power and isolation circuits can be particularly challenging due to the fast slew-rates (dv/dt) that can occur in wide-bandgap power converters. Even small parasitic capacitances can cause common-mode currents that induce unexpected behavior, resulting in increased EMI, instability, or even failures.
This seminar addresses all of these topics, and is designed to provide a clear, concise overview of the commonly available transistor types on the market today, and what their gate-drive requirements are. Then we will cover the common output-stage topologies for gate drivers, Isolation technologies, and system partitioning, followed by methods for powering the high and low-side drivers. Then we cover best-practices examples, PCB layout recommendations, and testing/troubleshooting measurement techniques.
The seminar covers transistors in the 600 – 650 V class, and is intended for power levels from 50 W up to about 5 kW (will not cover higher voltage, high-power SiC modules).