Within the last 20 years, especially with the adoption of wide bandgap (WBG) semiconductor devices, the switching speed and switching frequencies of power conversion systems have significantly increased to achieve high power densities. On the other hand, high switching speed and high frequencies have generated high electromagnetic interference (EMI) not only in the conventional conductive EMI frequency range but also in radiated EMI frequency range, which has not been fully investigated. Furthermore, high power density designs lead to strong near magnetic and electric field couplings which can transform into both conductive and radiated EMI noise. This further complicates the EMI suppression design.
This seminar will help power electronics researchers and engineers to understand and solve the EMI issues in power electronics systems by introducing the modeling, measurement, and suppression techniques across the conductive, near field, and radiated frequency domains. The seminar will introduce the basic EMI theories, the EMI measurement and diagnostic approaches, and various EMI suppression techniques for power electronics systems in depth. These theories, approaches, and techniques were based on the technical development of the presenter in the last more than 20 years in power electronics EMI/EMC. The seminar is good for all levels of engineers and students.