Norwegian University of Science and Technology (NTNU), Norway
To fully exploit the benefits of SiC technology for designing high-performance power electronic converters, three key aspects emerge, namely, accurate device characterization, modeling, and advanced gate drivers designs. The first two aspects allow for fast validation of converter designs, reducing development and prototyping effort. Advanced gate drivers are integral components for manipulating the switching performance of SiC power devices. This professional education seminar will provide an overview of static and dynamic characterization of SiC metal oxide semiconductor field- effect transistors (MOSFETs) in 1.2-3.3-kV classes. Besides, the development process of accurate SiC MOSFETs models for both traditional and real-time simulations will be presented. Moreover, the design, operation, and system-integration principles of adaptive voltage-source and current-source gate drivers for SiC MOSFETs will be analyzed. The main benefit of this seminar is the dissemination of knowledge concerning the design of high-performance converters by integrating and operating SiC MOSFETs. The seminar content is based on the research conducted by the power electronics group at the Norwegian University of Science and Technology (NTNU). The intended audience is design engineers, PhD students, senior researchers and professors dealing with design of SiC-based power converters.