Yan Jing (Texas Aamp;M College of Dentistry), Chi Ma ( Scottish Rite for Children), Alice Liang (Texas Aamp;M College of Dentistry), Jian Feng (Texas Aamp;M College of Dentistry)
The Temporomandibular joint (TMJ) is one of the most complex joints in the human body. TMJ is composed of the temporal bone, a disc and a movable mandibular condyle with abundant tendon attachments. Tendon has been thought to play the sole function of transmitting muscle forces to stabilize joints, yet it is largely unclear why tendon undergoes ectopic ossification in trauma or diseases, and whether it has any direct contribution to skeletal formation. This study aimed to investigate the full biological significance of tendon in TMJ growth. We first discovered that the TMJ condyle is composed of a well-established cartilage head and an overlooked “bony head” that grows after birth and continuously expands throughout the lifespan with little signs of remodeling. Mouse X-ray images (Fig.1a) showed little change in the cartilage head’s volume but a continuous expansion in the bony head’s mass with a low mineral content from 1 to 5 months (Fig.1b). Toluidine blue staining showed TMJ condyle had a large area of tendon attachment extending down to ramus (Fig.1c, white dotted line in lower magnification), defined by regions of tendon, interface, and TFB (Fig.1c1). The TFB morphology was distinct from endosteum-formed bone (EFB, Fig.1c1), cartilage-formed bone (CFB, Fig.1c2, rich in cartilage residual), or periosteum-formed bone (PFB, Fig.1c3) in cell shape and distribution, and ECM. TEM images further revealed that the osteocytes in the TFB were large in size, irregular in shape, had small nuclei but numerous ERs and Golgi complexes, and were embedded in ECM rich in fibropositors. In contrast, the osteocytes in EFB, CFB or PFB were spindle-shaped with larger nuclei but fewer ERs and Golgi complexes (Fig.1d). To reveal the cell source of the bony head, cell lineage tracing were used. Tracing data showed that most CFB cells originate from Col10a1+ hypertrophic chondrocytes, whereas the interface and TFB were derived from Scx+ cells (Fig.1e). RNAscope displayed high levels of Thbs4 (Thrombospondin-4, a tendon marker) and SOST (a potent inhibitor of Wnt signaling secreted by osteocytes) mRNA in TFB at bony head (Fig.1f). The Scx-CreERT2 tracing combined with IHC staining showed TFB maintained a mixed ECM of bone (Col1), cartilage (Aggrecan) and tendon (Periostin, Fig.1g). To further determine the role of tendon lineage in condyle expansion, we generated Scx-CreERT2; R26RDTA (carrying a loxP-flanked stop cassette associated with an attenuated diphtheria toxin fragment A, DTA, for the ablation of cells when Cre is active). Deletion of Scx+ cells greatly reduced the size of bony head (Fig.1h) and the thickness of interface with few Scx+/Col1+ bone cells in P28 DTA mice (Fig.1i); In conclusion, our study tendon cells, beyond their conventional role in joint movement, are key players for the postnatal growth and expansion of TMJ condyle (Fig.1j).
Financial support: NIDCR K08DE028593 to YJ; NIDCR R03DE02954 to YJ; NIDCR R01DE030643 to JF