(844.9) Acute Cannabigerol Administration Lowers Blood Pressure in Mice
Tuesday, April 5, 2022
10:00 AM – 12:00 PM
Location: Exhibit/Poster Hall A-B - Pennsylvania Convention Center
Poster Board Number: B172
Victoria Vernail (Penn State College of Medicine), Sarah Bingaman (Penn State College of Medicine), Wesley Raup-Konsavage (Penn State College of Medicine), Kent Vrana (Penn State College of Medicine), Amy Arnold (Penn State College of Medicine)
Presenting Author Penn State College of Medicine Hershey, Pennsylvania
Cannabigerol (CBG) is a cannabinoid compound that is synthesized from Cannabis sativa L. and acts as a substrate for both Δ9-tetraydrocannabinol (Δ9-THC) and cannabidiol (CBD) formation. Given that it does not exhibit psychoactive effects, emerging research has focused on CBG as a potential therapeutic for health conditions including algesia, epilepsy, anxiety, and cancer. While CBG can bind to cannabinoid receptors CB1 and CB2, it has also been described as an agonist at α2-adrenoreceptors (A2-AR), which when activated inhibit the release of norepinephrine from α-adrenergic neurons. This raises the concern that CBG could act at A2-AR to reduce norepinephrine release to cardiovascular end organs, such as the heart and kidneys, causing a reduction in blood pressure. Despite this possibility, there are no reports examining cardiovascular effects of CBG. In this study, we tested the hypothesis that acute CBG administration can lower blood pressure. To test this, six male C57BL/6J mice underwent surgery at 8-10 weeks of age to implant a radiotelemetry probe, which allows for continuous measurement of blood pressure, heart rate and locomotor activity in conscious, freely moving mice. Following 10 days of recovery, baseline measurements were obtained and then mice were randomized to receive intraperitoneal injections of CBG (3.3, 5.6, and 10 mg/kg) and vehicle in a crossover design, with at least one-week washout between treatments. Changes in blood pressure, heart rate, and locomotor activity were measured for two hours post-injection. We found that acute CBG significantly lowered blood pressure compared with vehicle (-12±5 mmHg vehicle vs. -28±2 mmHg at 10 mg/kg CBG; p=0.018), with no apparent dose responsiveness at the doses used in this study (-22±2 mmHg at 3.3 mg/kg CBG; -28±4 at 5.6 mg/kg CBG). The greatest blood pressure reduction was seen at 90-minutes post-CBG administration, which is consistent with reports for peak plasma concentrations of this compound in rodents. The blood pressure lowering effects of CBG occurred in the absence of changes in heart rate or locomotor activity. These overall findings suggest acute CBG may lower blood pressure in phenotypically normal young adult male mice, which may provide caution for the potential of hypotension as an adverse effect of CBG administration. Additional studies are needed to determine if the blood pressure lowering effects of CBG are via an A2-AR mechanism.