Presenting Author Rutgers University, Rutgers University
The risk of a terrorist attack in the U.S. has created challenges on how to effectively treat toxicities that result from exposure to chemical weapons. To address this concern, the U.S. has organized a trans-agency initiative across academia, government, and industry to identify drugs to treat tissue injury resulting from exposure to chemical threat agents. We sought to develop and evaluate an interactive educational session that provides hands-on instruction on how to re-purpose FDA approved drugs as therapeutics to treat toxicity from exposure to chemical weapons. As part of the Rutgers Summer Undergraduate Research Fellowship, 23 undergraduate students participated in a two-hour session that included: 1) an overview of chemical weapon toxicities, 2) a primer on pharmacology principles, and 3) an interactive session where teams of students were provided lists of FDA approved drugs to evaluate potential mechanisms of action and suitability as countermeasures for four chemical weapon case scenarios. The interactive session culminated in a competition for the best grant ‘sales pitch’. Pre- and post-program self-assessments using 5-point Likert rating scales were conducted during the session using Poll Everywhere. From this interactive training, students improved their understanding of 1) the ability of chemical weapons to cause long-term toxicities (means: pre-2.2; post-4.1, plt;0.0001), 2) impact of route of administration and exposure scenario on drug efficacy (means: pre-2.6; post-4.3, plt;0.0001), and 3) re-purposing FDA-approved drugs to treat exposure to chemical weapons (means: pre-1.7; post-4.0, plt;0.0001). Seventy six percent of participants were ‘very likely’ or ‘extremely likely’ to recommend this activity to other students. These findings demonstrated that an interactive training exercise can provide students new insights into drug development for chemical threat agent toxicities.
Supported by R25ES020721, T32ES007148, P30ES005022, UL1TR003017, U54AR055073 and the Society of Toxicology and ASPET SURF Intern Programs.