Background/Question/Methods Wildfire is an annual threat for many rural communities in the Pacific Northwest region of the United States. In some severe events, evacuation is one potential course of action to gain safety from an advancing wildfire. Since most evacuations occur in a personal vehicle along the surrounding road network, the quality of this network is a critical component of a community’s vulnerability to wildfire. In this paper, we leverage a high-resolution spatial dataset of wildfire burn probability and mean fireline intensity to conduct a regional-scale screening of wildfire evacuation vulnerability for 696 Oregon and Washington rural towns. We characterize each town’s surrounding road network to construct four simple road metrics related to the potential to quickly and safely evacuate: (1) the number of paved lanes leaving town that intersect a fixed-distance circular buffer; (2) the variety of lane directions available for egress; (3) the travel area that can be reached within a minimum distance while constrained only to movement along the paved road network; and (4) the sum of connected lanes at each intersection for the road network within a fixed-distance circular buffer. We then combine the road metrics with two metrics characterizing fire hazard of the surrounding landscape through which evacuation will occur: (1) burn probability and (2) mean fireline intensity. Results/Conclusions By combining the road and fire metrics, we create a composite score for ranking all towns by their overall evacuation vulnerability. The most vulnerable towns are those where poor road networks overlap with high fire hazard. Often, these towns are located in remote, forested, mountainous terrain, where topographic relief constrains the available road network and high fuel loads increase wildfire hazard. An interactive map of all road quality and fire hazard metrics is available at https ://www.fs.fed.us/wweta c/brief /evacuation .php.